rust的学习笔记

电气化、自动化、数字化、智能化、智慧化

0%

利用Mathematica进行有限元编程(三):三角形单元分析

本文是对Mathematica有限元分析与工程应用一书的学习笔记。

三角形单元适用于具有复杂和不规则边界形状的问题,是一种常见的网格离散方式。

双线性三角形单元

局部坐标系

之前的杆单元和桁架元的局部坐标系容易建立,即建在其自身上即可。而三角形单元的局部坐标系显然不能这样建立,其常采用一套无量纲的自然坐标系——面积坐标,如下图所示:

三角形123内部有一任意点P,P与顶点1、2、3组成3个子三角形,每个子三角形的面积与总面积之比记为$L_i$,即P点的面积坐标为$(L_1,L_2,L_3)$。
因为三个坐标相加为1,所以仅有两个独立的自然坐标,所以可以简记为:

注意到:面积坐标还有如下特点,在顶点1时,$\xi=1$,其他坐标为0。其他顶点亦同,见上图三个顶点处的坐标值。因此,面积坐标还有形函数的功能。即:

写成矩阵形式为:

在局部坐标系下形函数对$\xi,\eta$的偏导数为:

代码为:

1
2
ShapeN = {xi, eta, 1 - xi - eta};
DeriveN = {D[ShapeN, xi], D[ShapeN, eta]}

结果为:
1
{{1, 0, -1}, {0, 1, -1}}

偏导数在不同坐标系下的变换:

其中,J为Jacobian矩阵。在上式中,当局部坐标系中明确给定函数$N_1$时,等式的左侧可以求出。同时,当基于局部坐标系给出x和y的显式表达时,基于局部坐标系也可以给出Jacobian矩阵的显式表达。具体过程如下:
根据等参元的性质,基于局部坐标给出的标准形函数与整体坐标的形函数完全形同,则:

所以,Jacobian矩阵为:

具体到这里使用的面积坐标,则有:

所以:

Jacobian矩阵的逆变换为:

而Jacobian行列式则为:

在求解刚度矩阵时,所对应的积分中要用到此行列式。积分过程中的变量和区域需要进行变换:

Jacobian矩阵的逆矩阵和行列式则可以通过Inverse和Det命令求得。

应力应变矩阵

对平面应力问题,应力应变矩阵D为:

对平面应变问题,应力应变矩阵D为:

应变位移矩阵

应变、位移的关系为:

代入位移函数表达式,可得:

其中应变位移矩阵的一部分为:

单元刚度矩阵

根据最小势能原理,求得单元刚度矩阵表达式:

模块分析

建立单元刚度矩阵

1
2
3
4
5
6
7
8
9
10
11
12
13
14
GenerateLinearTriangKm[cord_] := Module[{Bmatrix, DeriveN, J, km},
n1 = xi; n2 = eta; n3 = 1 - xi - eta;
bdv = {{1, 0, -1}, {0, 1, -1}};(*这里是局部坐标系下的偏导数*)
J = bdv.cord;(*求解Jacobian矩阵*)
bdv = Simplify[Inverse[J].bdv];(*转换成整体坐标系下的偏导数*)
Bmatrix = {{bdv[[1, 1]], 0, bdv[[1, 2]], 0, bdv[[1, 3]], 0}, {0,
bdv[[2, 1]], 0, bdv[[2, 2]], 0, bdv[[2, 3]]}, {bdv[[2, 1]],
bdv[[1, 1]], bdv[[2, 2]], bdv[[1, 2]], bdv[[2, 3]], bdv[[1, 3]]}};
Dmatrix =
ee/(1 - nu*nu) {{1, nu, 0}, {nu, 1, 0}, {0, 0, (1 - nu)/2}};
km = h Integrate[
Det[J] (Transpose[Bmatrix].Dmatrix.Bmatrix), {xi, 0, 1}, {eta, 0,
1 - xi}]
]

组装刚度矩阵

1
2
3
4
5
6
7
8
9
AssembleLinearTriangKm[p1_, p2_, p3_, m_] := 
Module[{f}, f = {p1, p2, p3};
For[j = 1, j <= 3, j++, For[k = 1, k <= 3, k++,
GlobalK[[2 f[[j]], 2 f[[k]]]] += m[[2 j, 2 k]];
GlobalK[[2 f[[j]] - 1, 2 f[[k]]]] += m[[2 j - 1, 2 k]];
GlobalK[[2 f[[j]], 2 f[[k]] - 1]] += m[[2 j, 2 k - 1]];
GlobalK[[2 f[[j]] - 1, 2 f[[k]] - 1]] += m[[2 j - 1, 2 k - 1]];
]];
GlobalK]

这里注意矩阵带不带Matrixform在计算时有很大区别。
注意这里的循环次数为3,是因为每个单元有3个节点。

二次三角形单元

二次三角形单元就是在每条边上还各有一个节点,如图:

具体分析过程跟双线性三角形单元相同,只不过形函数更加复杂。且在组装总刚时循环系数为6。